1 Data and Codata

Data is defined by its introduction rules.
We can define a data type with

data Either a b
= Left a
+ Right Db

This definition will effectively introduce two
functions:

Left a —> Either a b
Right : b —-> Either a b

In order to destruct data we have to use pat-
terns which let you match on constructors.

case e of
Left x —> el
Right y —-> e2

Here, e represents the value being destructed,
and each branch represents a constructor with
which it might have been constructed. We are
effectively dispatching on possible pasts of e.

Codata is defined by its elimination rules.
We can define a codata type with

data Both a b
= first a
* second b

This definition will effectively introduce two
functions:

Both a b
Both a b

-> a
-> b

first
second

In order to construct codata we have to use
copatterns which let you match on destructors.

merge x from
first x <- el
second x <— e2

Here, x represents the value being constructed,
and each branch represents a destructor with
which it might eventually be destructed. We
are effectively dispatching on possible futures
of x.

2 Codata, Records, and Copatterns

In the same way that named sums are a natural way to represent data, records are a natural way to
represent codata. In lieu of the above syntax, one often sees codata represented as something more

like

record Both a b = { .first : a,

X Both Int Bool

x = { .first = 2, .second = true }
assert x.first == 2

assert x.second == true

.second : b }



The merge syntax is used here for conceptual symmetry with case. Additionally, the use of
copatterns is nicely dual with the extra expressivity that patterns offer. For example, we can use
nested patterns with constructors of various types, as in this function which processes a list of
Either Int Bool values by summing the integers in the list until it reaches a false value or the
end of the list:

f : List (Either Int Bool) —-> Int

f 1lst = case 1lst of
Cons (Left 1) xs —> i + f xs
Cons (Right b) xs -> if b then f xs else 0
Nil -> 0

Similarly, we can define an infinite stream of pairs using nested copatterns as so:

s : Int —> Stream (Both Int Bool)
s n = merge x from

first (head x) <— n

second (head x) <—- n > 0

tail x <- X

Copatterns are also practically expressive, as in this concise and readable definition of the fibonacci
numbers in terms of the merge expression:

data Stream a
= head a
* tail (Stream a)

zipWith : (a -=> b -> ¢) -> Stream a —-> Stream b -> Stream c
zipWith £ sl s2 = merge x from

head x <= f (head sl) (head s2)

tail x <- zipWith f (tail sl) (tail s2)

fibs : Stream Int
fibs = merge x from
head x <=0
head (tail x) <- 1
tail (tail x) <- zipWith (+ ) x (tail x)



3 Row-Typed Codata

It is possible to build an open sum by a small
modification of the datatype mechanism. In-
stead of naming types and listing their associ-
ated constructors, we represent a type as a list
of constructors and types.

{— .. =} [ Left: a + Right: b ]

Use of a constructor no longer specifies a spe-
cific type, but rather any type that can be con-
structed with that constructor.

Left a —> |
Right : b —>

Left:
[ Right:

a + ... ]
b+ ... 1

If we want to destruct an open value like this,
We can use a case construct, as before.

f : [ Left Int + Right Bool ]
f e = case e of

Left 1 -—> 1

Right b -> if b then 1 else 0

-> Inft

It is possible to build an open product by a small
modification of the datatype mechanism. In-
stead of naming types and listing their associ-
ated destructors, we represent a type as a list
of destructors and types.

{— .. =} { first: a = second: b

Use of a destructor no longer specifies a specific
type, but rather any type that can be destructed
with that destructor.

first
second

{ first: a = ... }
{ second: b =

—> a

If we want to construct an open value like this,
we can use a merge construct, as before.

f i = merge x from

first x <—- 1

second X <— 1 ==

Int -=> { First Int = Second Bool }



