
1 Data and Codata

Data is de�ned by its introduction rules. Codata is de�ned by its elimination rules.

We can de�ne a data type with We can de�ne a codata type with

data Either a b
= Left a
+ Right b

data Both a b
= first a

* second b

This de�nition will e�ectively introduce two

functions:

This de�nition will e�ectively introduce two

functions:

Left : a -> Either a b
Right : b -> Either a b

first : Both a b -> a
second : Both a b -> b

In order to destruct data we have to use pat-

terns which let you match on constructors.

In order to construct codata we have to use

copatterns which let you match on destructors.

case e of
Left x -> e1
Right y -> e2

merge x from
first x <- e1
second x <- e2

Here, e represents the value being destructed,

and each branch represents a constructor with

which it might have been constructed. We are

e�ectively dispatching on possible pasts of e.

Here, x represents the value being constructed,

and each branch represents a destructor with

which it might eventually be destructed. We

are e�ectively dispatching on possible futures

of x.

2 Codata, Records, and Copatterns

In the same way that named sums are a natural way to represent data, records are a natural way to

represent codata. In lieu of the above syntax, one often sees codata represented as something more

like

record Both a b = { .first : a, .second : b }

x : Both Int Bool
x = { .first = 2, .second = true }

assert x.first == 2
assert x.second == true

1

The merge syntax is used here for conceptual symmetry with case. Additionally, the use of

copatterns is nicely dual with the extra expressivity that patterns o�er. For example, we can use

nested patterns with constructors of various types, as in this function which processes a list of

Either Int Bool values by summing the integers in the list until it reaches a false value or the

end of the list:

f : List (Either Int Bool) -> Int
f lst = case lst of
Cons (Left i) xs -> i + f xs
Cons (Right b) xs -> if b then f xs else 0
Nil -> 0

Similarly, we can de�ne an in�nite stream of pairs using nested copatterns as so:

s : Int -> Stream (Both Int Bool)
s n = merge x from
first (head x) <- n
second (head x) <- n > 0
tail x <- x

Copatterns are also practically expressive, as in this concise and readable de�nition of the �bonacci

numbers in terms of the merge expression:

data Stream a
= head a

* tail (Stream a)

zipWith : (a -> b -> c) -> Stream a -> Stream b -> Stream c
zipWith f s1 s2 = merge x from
head x <- f (head s1) (head s2)
tail x <- zipWith f (tail s1) (tail s2)

fibs : Stream Int
fibs = merge x from
head x <- 0
head (tail x) <- 1
tail (tail x) <- zipWith (+) x (tail x)

2

3 Row-Typed Codata

It is possible to build an open sum by a small

modi�cation of the datatype mechanism. In-

stead of naming types and listing their associ-

ated constructors, we represent a type as a list

of constructors and types.

It is possible to build an open product by a small

modi�cation of the datatype mechanism. In-

stead of naming types and listing their associ-

ated destructors, we represent a type as a list

of destructors and types.

{- .. -} : [Left: a + Right: b] {- .. -} : { first: a * second: b }

Use of a constructor no longer speci�es a spe-

ci�c type, but rather any type that can be con-

structed with that constructor.

Use of a destructor no longer speci�es a speci�c

type, but rather any type that can be destructed

with that destructor.

Left : a -> [Left: a + ...]
Right : b -> [Right: b + ...]

first : { first: a * ... } -> a
second : { second: b * ... } -> b

If we want to destruct an open value like this,

we can use a case construct, as before.

If we want to construct an open value like this,

we can use a merge construct, as before.

f : [Left Int + Right Bool] -> Int
f e = case e of

Left i -> i
Right b -> if b then 1 else 0

f : Int -> { First Int * Second Bool }
f i = merge x from

first x <- i
second x <- i == 0

3

