
Latka: A Language For Random Text Generation
Getty D. Ritter

Latka is a total, strongly typed functional programming
language for generating random text according to predefined
patterns. To this end, Latka incorporates weighted random
choice as an effect in its expression language and provides
a set of combinators for constructing high-level semantic
constructs such as sentences and paragraphs. The eventual
purpose of Latka is to produce code that can be embedded
into other systems such as video games.

The primary operators of the expression language are concate-
nation (which is represented by juxtaposing two expressions,
e.g., e1 e2) and choice (which is represented by a vertical
bar to mimic BNF notation, e.g., e1 | e2), with weighted
choice n: e1 | m: e2 (where m and n are Nats) being a
convenient syntactic sugar. Another piece of syntactic sugar
is repetition, in which n @ e (where n is an expression of
type Nat) stands for n repetitions of e. A simple program
can be built out of just these primitives:
consonant , vowel , syllable : String
consonant = "p" | "t" | "k" | "w"

| "h" | "m" | "n"
vowel = "a" | "e" | "i" | "o" | "u"
syllable = let v = 5: vowel | vowel "'" in

5: consonant v | 2: v

-- e.g., pate 'hai , aku , e'epoto '
puts (2 | 3 | 4 | 5) @ syllable

By default, evaluation order is call-by-name so that repeated
use of the same name will result in different values, but
by prefixing any binding with the keyword fixed one can
specify call-by-value evaluation order, effectively selecting a
value consistently for the duration of the use of the name:
-- Can evaluate to aa , ab , ba , or bb
puts let x = "a" | "b" in x x

-- Can only ever evaluate to aa or bb
puts let fixed x = "a" | "b" in x x

Latka has a set of features like other strongly typed functional
languages like Haskell or OCaml, including named sums as a
datatype mechanism, pattern matching, and typeclasses for
ad-hoc polymorphism. Like Coq or Agda, recursive functions
are restricted to structural recursion to ensure termination
of embedded Latka programs. Latka also includes a set of
functions for structuring larger blocks of text. These take
advantage of a particular aspect of the type system which
allows for variadic polymorphism. In the example below,
sent is one such function; it takes arbitrary-length tuples

of values coercible to sentence fragments and intelligently
converts them to a correct sentence with capitalization and
punctuation.1

samp : String * Word * Sentence
samp = ("one",wd."two",sent .("three","four"))

-- prints "One two three four ."
puts sent.samp

Some of these examples can be seen in practice in the follow-
ing program.
import Language . Natural .Latin as Latin

data Gender = Male | Female

pronoun : Gender -> Word
pronoun . Male = wd."he"
pronoun . Female = wd."she"

noun : Gender -> Word
noun . Male = wd."man"
noun . Female = wd."woman"

puts let fixed g = Male | Female in
para .(sent .("You see a Roman"

, noun.g
, "from"
, proper_noun .(Latin/ cityName)
)

, sent .(pronoun .g
, "has"
, ("brown"|"black"|" blonde ")
, "hair and carries "
, range .50.500
, " denarii "
)

)
-- It might print , for example , "You see a
-- Roman woman from Arucapa . She has black
-- hair and carries 433 denarii ."

1Latka’s function invocation syntax is an infixed . operator, bor-
rowed from the notation Edsger W. Dijkstra outlined in his note
EWD1300. This operator has the highest binding power and is left-
associative so that f.x.y == (f.x).y.

1

