Renamed Data.SExpression to non-conflicting (but terribly punny) name Data.SCargot
Getty Ritter
10 years ago
| 1 | -- | Contains the type of atoms that Common Lisp understands, as | |
| 2 | -- well as the built-in reader macros that Common Lisp provides. | |
| 3 | -- Given a Common Lisp source file that contains no extra reader | |
| 4 | -- macro definitions, this module should successfully parse and | |
| 5 | -- desugar even quoted lists and vector literals. | |
| 6 | ||
| 7 | module Data.SCargot.CommonLisp where | |
| 8 | ||
| 9 | data Atom | |
| 10 | = Symbol Text | |
| 11 | | String Text | |
| 12 | | Integer Int | |
| 13 | | True | |
| 14 | deriving (Eq, Show, Read) | |
| 15 | ||
| 16 | parseSexpr :: Text -> Either SExprError |
| 1 | module Data.SCargot.General where | |
| 2 | ||
| 3 | import Control.Applicative | |
| 4 | import Data.Attoparsec.Text | |
| 5 | import Data.Map.String (Map) | |
| 6 | import qualified Data.Map.String as M | |
| 7 | ||
| 8 | import Data.SCargot.Repr | |
| 9 | ||
| 10 | type ReaderMacroMap atom = Map Char (Reader atom) | |
| 11 | type Reader atom = (Parser (SExpr atom) -> Parser (SExpr atom)) | |
| 12 | type Serializer atom = atom -> Text | |
| 13 | ||
| 14 | -- | A 'SExprSpec' describes a parser and emitter for a particular | |
| 15 | -- variant of S-Expressions. The @atom@ type corresponds to a | |
| 16 | -- Haskell type used to represent the atoms, and the @carrier@ | |
| 17 | -- type corresponds to the parsed S-Expression structure. This | |
| 18 | -- is deliberately opaque so that it must be constructed and | |
| 19 | -- modified with other helper functions. | |
| 20 | data SExprSpec atom carrier = SExprSpec | |
| 21 | { sesPAtom :: Parser atom | |
| 22 | , sesSAtom :: Serializer atom | |
| 23 | , rmMap :: ReaderMacroMap atom | |
| 24 | , postparse :: SExpr atom -> Either String carrier | |
| 25 | , preserial :: carrier -> SExpr atom | |
| 26 | } | |
| 27 | ||
| 28 | -- | This creates a basic 'SExprSpec' when given a parser and serializer | |
| 29 | -- for an atom type. | |
| 30 | mkSpec :: Parser atom -> Serializer atom -> SExprSpec atom (SExpr atom) | |
| 31 | mkSpec p s = SExprSpec | |
| 32 | { sesPAtom = p | |
| 33 | , sesSAtom = s | |
| 34 | , rmMap = M.empty | |
| 35 | , postparse = return | |
| 36 | , preserial = id | |
| 37 | } | |
| 38 | ||
| 39 | -- | This is used to modify the carrier type for a 'SExprSpec'. This is | |
| 40 | -- used internally to convert between various 'SExpr' representations, | |
| 41 | -- but could also be used externally to add an extra conversion layer | |
| 42 | -- onto a 'SExprSpec', e.g. for a custom Lisp-like language: | |
| 43 | -- | |
| 44 | -- > mySpec :: SExprSpec MyAtomType MyAST | |
| 45 | -- > mySpec = convertSpec sexprToMyAST myASTToSexpr spec | |
| 46 | -- > where spec = mkSpec myParser mySerializer | |
| 47 | convertSpec :: (b -> Either String c) -> (c -> b) -> SExprSpec a b -> SExprSpec a c | |
| 48 | convertSpec f g spec = spec | |
| 49 | { postparse = postparse spec >=> f | |
| 50 | , preserial = g . preserial spec | |
| 51 | } | |
| 52 | ||
| 53 | addReader :: Char -> Reader a -> SExprSpec a c -> SExprSpec a c | |
| 54 | addReader c reader spec = spec { rmMap = insert c reader (rmMap spec) } | |
| 55 | ||
| 56 | quote :: atom -> Reader atom | |
| 57 | quote q parse = go <$> parse | |
| 58 | where go v = SCons q (SCons v SNil) | |
| 59 | ||
| 60 | toRich :: SExprSpec a (SExpr b) -> SExprSpec a (RichSExpr b) | |
| 61 | toRich = convertSpec (return . toRich) fromRich | |
| 62 | ||
| 63 | toWellFormed :: SExprSpec a (SExpr b) -> SExprSpec a (WellFormedSExpr b) | |
| 64 | toWellFormed = convertSpec toWellFormed fromWellFormed | |
| 65 | ||
| 66 | parseGenericSExpr :: Parser atom -> ReaderMacroMap atom -> Parser (SExpr atom) | |
| 67 | ||
| 68 | -- | | |
| 69 | parseSExpr :: SExprSpec atom carrier -> Text -> Either String carrier | |
| 70 | parseSExpr spec = undefined | |
| 71 | ||
| 72 | -- | blah | |
| 73 | serializeSExpr :: SExprSpec atom carrier -> carrier -> Text | |
| 74 | serializeSExpr spec = serializeGenericSExpr ses . preserial |
| 1 | {-# LANGUAGE PatternSynonyms #-} | |
| 2 | ||
| 3 | module Data.SCargot.Repr.Rich | |
| 4 | ( pattern List | |
| 5 | , pattern DotList | |
| 6 | , pattern Atom | |
| 7 | ) where | |
| 8 | ||
| 9 | import Data.SCargot.Repr as R | |
| 10 | ||
| 11 | pattern List xs = R.RSList xs | |
| 12 | pattern DotList xs = R.RSDotted xs | |
| 13 | pattern Atom a = R.RSAtom a |
| 1 | {-# LANGUAGE PatternSynonyms #-} | |
| 2 | ||
| 3 | module Data.SCargot.Repr.Rich | |
| 4 | ( pattern List | |
| 5 | , pattern Atom | |
| 6 | ) where | |
| 7 | ||
| 8 | import Data.SCargot.Repr as R | |
| 9 | ||
| 10 | pattern List xs = R.WFSList xs | |
| 11 | pattern Atom a = R.WFSAtom a |
| 1 | module Data.SCargot.Repr | |
| 2 | ( SExpr(..) | |
| 3 | , RichSExpr(..) | |
| 4 | , toRich | |
| 5 | , fromRich | |
| 6 | , WellFormedSExpr(..) | |
| 7 | , toWellFormed | |
| 8 | , fromWellFormed | |
| 9 | ) where | |
| 10 | ||
| 11 | -- | All S-Expressions can be understood as a sequence | |
| 12 | -- of @cons@ cells (represented here by 'SCons'), the | |
| 13 | -- empty list @nil@ (represented by 'SNil') or an | |
| 14 | -- @atom@. | |
| 15 | data SExpr atom | |
| 16 | = SCons (SExpr atom) (SExpr atom) | |
| 17 | | SAtom atom | |
| 18 | | SNil | |
| 19 | deriving (Eq, Show, Read) | |
| 20 | ||
| 21 | -- | Sometimes, the cons-based interface is too low | |
| 22 | -- level, and we'd rather have the lists themselves | |
| 23 | -- exposed. In this case, we have 'RSList' to | |
| 24 | -- represent a well-formed cons list, and 'RSDotted' | |
| 25 | -- to represent an improper list of the form | |
| 26 | -- @(a b c . d)@. | |
| 27 | data RichSExpr atom | |
| 28 | = RSList [RichSExpr atom] | |
| 29 | | RSDotted [RichSExpr atom] atom | |
| 30 | | RSAtom atom | |
| 31 | deriving (Eq, Show, Read) | |
| 32 | ||
| 33 | -- | A Rich S-Expression might be a nicer interface | |
| 34 | -- for certain libraries. It should always be true | |
| 35 | -- that | |
| 36 | -- | |
| 37 | -- > fromRich . toRich == id | |
| 38 | -- | |
| 39 | -- and that | |
| 40 | -- | |
| 41 | -- > toRich . fromRich == id | |
| 42 | toRich :: SExpr atom -> RichSExpr atom | |
| 43 | toRich (SAtom a) = RSAtom a | |
| 44 | toRich (SCons x xs) = go xs [toRich x] | |
| 45 | where go (SAtom a) rs = RSDotted rs a | |
| 46 | go SNil rs = RSList rs | |
| 47 | go (SCons x xs) rs = go xs (toRich x:rs) | |
| 48 | ||
| 49 | -- | This follows the same laws as 'toRich'. | |
| 50 | fromRich :: RichSExpr atom -> SExpr atom | |
| 51 | fromRich (RSAtom a) = SAtom a | |
| 52 | fromRich (RSList xs) = foldr SCons SNil (map fromRich xs) | |
| 53 | fromRich (RSDotted xs x) = foldr SCons (SAtom x) (map fromRich xs) | |
| 54 | ||
| 55 | -- | A well-formed s-expression is one which does not | |
| 56 | -- contain any dotted lists. This means that not | |
| 57 | -- every value of @SExpr a@ can be converted to a | |
| 58 | -- @WellFormedSExpr a@, although the opposite is | |
| 59 | -- fine. | |
| 60 | data WellFormedSExpr atom | |
| 61 | = WFSList [WellFormedSExpr atom] | |
| 62 | | WFSAtom atom | |
| 63 | deriving (Eq, Show, Read) | |
| 64 | ||
| 65 | -- | This will be @Nothing@ is the argument contains an | |
| 66 | -- improper list. It should hold that | |
| 67 | -- | |
| 68 | -- > toWellFormed . fromWellFormed == Right | |
| 69 | toWellFormed :: SExpr atom -> Either String (WellFormedSExpr atom) | |
| 70 | toWellFormed (SAtom a) = return (WFSAtom a) | |
| 71 | toWellFormed (SCons x xs) = do | |
| 72 | x' <- toWellFormed x | |
| 73 | go xs [x'] | |
| 74 | where go (SAtom a) rs = Left "Found atom in cdr position" | |
| 75 | go SNil rs = return (WFSList rs) | |
| 76 | go (SCons x xs) rs = do | |
| 77 | x' <- toWellFormed x | |
| 78 | go xs (x':rs) | |
| 79 | ||
| 80 | -- | Convert a WellFormedSExpr back into a SExpr. | |
| 81 | fromWellFormed :: WellFormedSExpr atom -> SExpr atom | |
| 82 | fromWellFormed (WFSAtom a) = SAtom a | |
| 83 | fromWellFormed (WFSList xs) = | |
| 84 | foldr SCons SNil (map fromWellFormed xs) |
| 1 | module Data.SCargot.Rivest where | |
| 2 | ||
| 3 | import Data.ByteString (ByteString) | |
| 4 | import qualified Data.ByteString as BS | |
| 5 | import qualified Data.ByteString.Base64 as B64 | |
| 6 | import Data.Text (Text) | |
| 7 | import qualified Data.Text as T | |
| 8 | ||
| 9 | newtype Atom = Atom { fromAtom :: ByteString } deriving (Eq, Show, Read) | |
| 10 | ||
| 11 | pToken :: Parser ByteString | |
| 12 | pToken = undefined | |
| 13 | ||
| 14 | pQuoted :: Maybe Int -> Parser ByteString | |
| 15 | pQuoted = do | |
| 16 | char '"' | |
| 17 | ss <- many1 quoteChar | |
| 18 | char '"' | |
| 19 | return ss | |
| 20 | ||
| 21 | pHex :: Parser ByteString | |
| 22 | pHex = undefined | |
| 23 | ||
| 24 | pVerbatim :: Int -> Parser ByteString | |
| 25 | pVerbatim = do | |
| 26 | char ':' | |
| 27 | take n | |
| 28 | ||
| 29 | pBase64Verbatim :: Parser ByteString | |
| 30 | pBase64 :: Parser ByteString |
| 1 | {-| The "s-cargot" library attempts to be as general as possible, and | |
| 2 | to support a wide range of use-cases for s-expressions. It is built | |
| 3 | around a core of primitives which are then exposed in various | |
| 4 | ways, and can be easily and flexibly extended. This tutorial | |
| 5 | describes particular use-cases, and then shows how to adapt this | |
| 6 | library to that use-case. | |
| 7 | -} | |
| 8 | ||
| 9 | module Data.SCargot.Tutorial | |
| 10 | ( -- * Basic Usage and Organization | |
| 11 | -- $usage | |
| 12 | -- * Analyzing Scheme code | |
| 13 | -- $scheme | |
| 14 | -- * Building a Custom Config Format | |
| 15 | -- $config | |
| 16 | -- * Building a Custom Lisp | |
| 17 | -- $lisp | |
| 18 | ) where | |
| 19 | ||
| 20 | {- $usage | |
| 21 | ||
| 22 | -} | |
| 23 | ||
| 24 | {- $scheme | |
| 25 | ||
| 26 | -} | |
| 27 | ||
| 28 | ||
| 29 | {- $config | |
| 30 | ||
| 31 | -} | |
| 32 | ||
| 33 | {- $lisp | |
| 34 | ||
| 35 | -} |
| 1 | -- | Contains the type of atoms that Common Lisp understands, as | |
| 2 | -- well as the built-in reader macros that Common Lisp provides. | |
| 3 | -- Given a Common Lisp source file that contains no extra reader | |
| 4 | -- macro definitions, this module should successfully parse and | |
| 5 | -- desugar even quoted lists and vector literals. | |
| 6 | ||
| 7 | module Data.SExpression.CommonLisp where | |
| 8 | ||
| 9 | data Atom | |
| 10 | = Symbol Text | |
| 11 | | String Text | |
| 12 | | Integer Int | |
| 13 | | True | |
| 14 | deriving (Eq, Show, Read) | |
| 15 | ||
| 16 | parseSexpr :: Text -> Either SExprError |
| 1 | module Data.SExpression.General where | |
| 2 | ||
| 3 | import Control.Applicative | |
| 4 | import Data.Attoparsec.Text | |
| 5 | import Data.Map.String (Map) | |
| 6 | import qualified Data.Map.String as M | |
| 7 | ||
| 8 | type ReaderMacroMap atom = Map Char (Reader atom) | |
| 9 | type Reader atom = (Parser (SExpr atom) -> Parser (SExpr atom)) | |
| 10 | type Serializer atom = atom -> Text | |
| 11 | ||
| 12 | -- | A 'SExprSpec' describes a parser and emitter for a particular | |
| 13 | -- variant of S-Expressions. The @atom@ type corresponds to a | |
| 14 | -- Haskell type used to represent the atoms, and the @carrier@ | |
| 15 | -- type corresponds to the parsed S-Expression structure. This | |
| 16 | -- is deliberately opaque so that it must be constructed and | |
| 17 | -- modified with other helper functions. | |
| 18 | data SExprSpec atom carrier = SExprSpec | |
| 19 | { sesPAtom :: Parser atom | |
| 20 | , sesSAtom :: Serializer atom | |
| 21 | , rmMap :: ReaderMacroMap atom | |
| 22 | , postparse :: SExpr atom -> Either String carrier | |
| 23 | , preserial :: carrier -> SExpr atom | |
| 24 | } | |
| 25 | ||
| 26 | -- | This creates a basic 'SExprSpec' when given a parser and serializer | |
| 27 | -- for an atom type. | |
| 28 | mkSpec :: Parser atom -> Serializer atom -> SExprSpec atom (SExpr atom) | |
| 29 | mkSpec p s = SExprSpec | |
| 30 | { sesPAtom = p | |
| 31 | , sesSAtom = s | |
| 32 | , rmMap = M.empty | |
| 33 | , postparse = return | |
| 34 | , preserial = id | |
| 35 | } | |
| 36 | ||
| 37 | -- | This is used to modify the carrier type for a 'SExprSpec'. This is | |
| 38 | -- used internally to convert between various 'SExpr' representations, | |
| 39 | -- but could also be used externally to add an extra conversion layer | |
| 40 | -- onto a 'SExprSpec', e.g. for a custom Lisp-like language: | |
| 41 | -- | |
| 42 | -- > mySpec :: SExprSpec MyAtomType MyAST | |
| 43 | -- > mySpec = convertSpec sexprToMyAST myASTToSexpr spec | |
| 44 | -- > where spec = mkSpec myParser mySerializer | |
| 45 | convertSpec :: (b -> Either String c) -> (c -> b) -> SExprSpec a b -> SExprSpec a c | |
| 46 | convertSpec f g spec = spec | |
| 47 | { postparse = postparse spec >=> f | |
| 48 | , preserial = g . preserial spec | |
| 49 | } | |
| 50 | ||
| 51 | addReader :: Char -> Reader a -> SExprSpec a c -> SExprSpec a c | |
| 52 | addReader c reader spec = spec { rmMap = insert c reader (rmMap spec) } | |
| 53 | ||
| 54 | quote :: atom -> Reader atom | |
| 55 | quote q parse = go <$> parse | |
| 56 | where go v = SCons q (SCons v SNil) | |
| 57 | ||
| 58 | toRich :: SExprSpec a (SExpr b) -> SExprSpec a (RichSExpr b) | |
| 59 | toRich = convertSpec (return . toRich) fromRich | |
| 60 | ||
| 61 | toWellFormed :: SExprSpec a (SExpr b) -> SExprSpec a (WellFormedSExpr b) | |
| 62 | toWellFormed = convertSpec toWellFormed fromWellFormed | |
| 63 | ||
| 64 | parseGenericSExpr :: Parser atom -> ReaderMacroMap atom -> Parser (SExpr atom) | |
| 65 | ||
| 66 | -- | | |
| 67 | parseSExpr :: SExprSpec atom carrier -> Text -> Either String carrier | |
| 68 | parseSExpr spec = undefined | |
| 69 | ||
| 70 | -- | blah | |
| 71 | serializeSExpr :: SExprSpec atom carrier -> carrier -> Text | |
| 72 | serializeSExpr spec = serializeGenericSExpr ses . preserial |
| 1 | {-# LANGUAGE PatternSynonyms #-} | |
| 2 | ||
| 3 | module Data.SExpression.Repr.Rich | |
| 4 | ( pattern List | |
| 5 | , pattern DotList | |
| 6 | , pattern Atom | |
| 7 | ) where | |
| 8 | ||
| 9 | import Data.SExpression.Repr as R | |
| 10 | ||
| 11 | pattern List xs = R.RSList xs | |
| 12 | pattern DotList xs = R.RSDotted xs | |
| 13 | pattern Atom a = R.RSAtom a |
| 1 | {-# LANGUAGE PatternSynonyms #-} | |
| 2 | ||
| 3 | module Data.SExpression.Repr.Rich | |
| 4 | ( pattern List | |
| 5 | , pattern Atom | |
| 6 | ) where | |
| 7 | ||
| 8 | import Data.SExpression.Repr as R | |
| 9 | ||
| 10 | pattern List xs = R.WFSList xs | |
| 11 | pattern Atom a = R.WFSAtom a |
| 1 | module Data.SExpression.Repr | |
| 2 | ( SExpr(..) | |
| 3 | , RichSExpr(..) | |
| 4 | , toRich | |
| 5 | , fromRich | |
| 6 | , WellFormedSExpr(..) | |
| 7 | , toWellFormed | |
| 8 | , fromWellFormed | |
| 9 | ) where | |
| 10 | ||
| 11 | -- | All S-Expressions can be understood as a sequence | |
| 12 | -- of @cons@ cells (represented here by 'SCons'), the | |
| 13 | -- empty list @nil@ (represented by 'SNil') or an | |
| 14 | -- @atom@. | |
| 15 | data SExpr atom | |
| 16 | = SCons (SExpr atom) (SExpr atom) | |
| 17 | | SAtom atom | |
| 18 | | SNil | |
| 19 | deriving (Eq, Show, Read) | |
| 20 | ||
| 21 | -- | Sometimes, the cons-based interface is too low | |
| 22 | -- level, and we'd rather have the lists themselves | |
| 23 | -- exposed. In this case, we have 'RSList' to | |
| 24 | -- represent a well-formed cons list, and 'RSDotted' | |
| 25 | -- to represent an improper list of the form | |
| 26 | -- @(a b c . d)@. | |
| 27 | data RichSExpr atom | |
| 28 | = RSList [RichSExpr atom] | |
| 29 | | RSDotted [RichSExpr atom] atom | |
| 30 | | RSAtom atom | |
| 31 | deriving (Eq, Show, Read) | |
| 32 | ||
| 33 | -- | A Rich S-Expression might be a nicer interface | |
| 34 | -- for certain libraries. It should always be true | |
| 35 | -- that | |
| 36 | -- | |
| 37 | -- > fromRich . toRich == id | |
| 38 | -- | |
| 39 | -- and that | |
| 40 | -- | |
| 41 | -- > toRich . fromRich == id | |
| 42 | toRich :: SExpr atom -> RichSExpr atom | |
| 43 | toRich (SAtom a) = RSAtom a | |
| 44 | toRich (SCons x xs) = go xs [toRich x] | |
| 45 | where go (SAtom a) rs = RSDotted rs a | |
| 46 | go SNil rs = RSList rs | |
| 47 | go (SCons x xs) rs = go xs (toRich x:rs) | |
| 48 | ||
| 49 | -- | This follows the same laws as 'toRich'. | |
| 50 | fromRich :: RichSExpr atom -> SExpr atom | |
| 51 | fromRich (RSAtom a) = SAtom a | |
| 52 | fromRich (RSList xs) = foldr SCons SNil (map fromRich xs) | |
| 53 | fromRich (RSDotted xs x) = foldr SCons (SAtom x) (map fromRich xs) | |
| 54 | ||
| 55 | -- | A well-formed s-expression is one which does not | |
| 56 | -- contain any dotted lists. This means that not | |
| 57 | -- every value of @SExpr a@ can be converted to a | |
| 58 | -- @WellFormedSExpr a@, although the opposite is | |
| 59 | -- fine. | |
| 60 | data WellFormedSExpr atom | |
| 61 | = WFSList [WellFormedSExpr atom] | |
| 62 | | WFSAtom atom | |
| 63 | deriving (Eq, Show, Read) | |
| 64 | ||
| 65 | -- | This will be @Nothing@ is the argument contains an | |
| 66 | -- improper list. It should hold that | |
| 67 | -- | |
| 68 | -- > toWellFormed . fromWellFormed == Right | |
| 69 | toWellFormed :: SExpr atom -> Either String (WellFormedSExpr atom) | |
| 70 | toWellFormed (SAtom a) = return (WFSAtom a) | |
| 71 | toWellFormed (SCons x xs) = do | |
| 72 | x' <- toWellFormed x | |
| 73 | go xs [x'] | |
| 74 | where go (SAtom a) rs = Left "Found atom in cdr position" | |
| 75 | go SNil rs = return (WFSList rs) | |
| 76 | go (SCons x xs) rs = do | |
| 77 | x' <- toWellFormed x | |
| 78 | go xs (x':rs) | |
| 79 | ||
| 80 | -- | Convert a WellFormedSExpr back into a SExpr. | |
| 81 | fromWellFormed :: WellFormedSExpr atom -> SExpr atom | |
| 82 | fromWellFormed (WFSAtom a) = SAtom a | |
| 83 | fromWellFormed (WFSList xs) = | |
| 84 | foldr SCons SNil (map fromWellFormed xs) |
| 1 | module Data.SExpression.Rivest where | |
| 2 | ||
| 3 | import Data.ByteString (ByteString) | |
| 4 | import qualified Data.ByteString as BS | |
| 5 | import qualified Data.ByteString.Base64 as B64 | |
| 6 | import Data.Text (Text) | |
| 7 | import qualified Data.Text as T | |
| 8 | ||
| 9 | newtype Atom = Atom { fromAtom :: ByteString } deriving (Eq, Show, Read) | |
| 10 | ||
| 11 | pToken :: Parser ByteString | |
| 12 | pToken = undefined | |
| 13 | ||
| 14 | pQuoted :: Maybe Int -> Parser ByteString | |
| 15 | pQuoted = do | |
| 16 | char '"' | |
| 17 | ss <- many1 quoteChar | |
| 18 | char '"' | |
| 19 | return ss | |
| 20 | ||
| 21 | pHex :: Parser ByteString | |
| 22 | pHex = undefined | |
| 23 | ||
| 24 | pVerbatim :: Int -> Parser ByteString | |
| 25 | pVerbatim = do | |
| 26 | char ':' | |
| 27 | take n | |
| 28 | ||
| 29 | pBase64Verbatim :: Parser ByteString | |
| 30 | pBase64 :: Parser ByteString |
| 1 | {-| The @blah@ library attempts to be as general as possible, and to | |
| 2 | support a wide range of use-cases for s-expressions. It is built | |
| 3 | around a core of primitives which are then exposed in various | |
| 4 | ways, and can be easily and flexibly extended. This tutorial | |
| 5 | describes particular use-cases, and then shows how to adapt this | |
| 6 | library to that use-case. | |
| 7 | -} | |
| 8 | ||
| 9 | module Data.SExpression.Tutorial | |
| 10 | ( -- * Basic Usage and Organization | |
| 11 | -- $usage | |
| 12 | -- * Analyzing Scheme code | |
| 13 | -- $scheme | |
| 14 | -- * Building a Custom Config Format | |
| 15 | -- $config | |
| 16 | -- * Building a Custom Lisp | |
| 17 | -- $lisp | |
| 18 | ) where | |
| 19 | ||
| 20 | {- $usage | |
| 21 | ||
| 22 | -} | |
| 23 | ||
| 24 | {- $scheme | |
| 25 | ||
| 26 | -} | |
| 27 | ||
| 28 | ||
| 29 | {- $config | |
| 30 | ||
| 31 | -} | |
| 32 | ||
| 33 | {- $lisp | |
| 34 | ||
| 35 | -} |